Runx Family Genes in a Cartilaginous Fish, the Elephant Shark (Callorhinchus milii)
نویسندگان
چکیده
The Runx family genes encode transcription factors that play key roles in hematopoiesis, skeletogenesis and neurogenesis and are often implicated in diseases. We describe here the cloning and characterization of Runx1, Runx2, Runx3 and Runxb genes in the elephant shark (Callorhinchus milii), a member of Chondrichthyes, the oldest living group of jawed vertebrates. Through the use of alternative promoters and/or alternative splicing, each of the elephant shark Runx genes expresses multiple isoforms similar to their orthologs in human and other bony vertebrates. The expression profiles of elephant shark Runx genes are similar to those of mammalian Runx genes. The syntenic blocks of genes at the elephant shark Runx gene loci are highly conserved in human, but represented by shorter conserved blocks in zebrafish indicating a higher degree of rearrangements in this teleost fish. Analysis of promoter regions revealed conservation of binding sites for transcription factors, including two tandem binding sites for Runx that are totally conserved in the distal promoter regions of elephant shark Runx1-3. Several conserved noncoding elements (CNEs), which are putative cis-regulatory elements, and miRNA binding sites were identified in the elephant shark and human Runx gene loci. Some of these CNEs and miRNA binding sites are absent in teleost fishes such as zebrafish and fugu. In summary, our analysis reveals that the genomic organization and expression profiles of Runx genes were already complex in the common ancestor of jawed vertebrates.
منابع مشابه
Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome
Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors descri...
متن کاملSequencing and Analysis of Full-Length cDNAs, 5′-ESTs and 3′-ESTs from a Cartilaginous Fish, the Elephant Shark (Callorhinchus milii)
Cartilaginous fishes are the most ancient group of living jawed vertebrates (gnathostomes) and are, therefore, an important reference group for understanding the evolution of vertebrates. The elephant shark (Callorhinchus milii), a holocephalan cartilaginous fish, has been identified as a model cartilaginous fish genome because of its compact genome (∼910 Mb) and a genome project has been initi...
متن کاملProposal to generate a draft assembly of the compact elephant shark genome
2 Introduction Cartilaginous fishes (Chondrichthyes) are the most basal extant jawed vertebrates that diverged from the common ancestor of tetrapods and teleost fishes (Osteichthyes) approximately 530 Myr ago (Kumar and Hedges, 1998; Fig.1). Cartilaginous fishes possess a body plan and complex physiological systems that are typical of all jawed vertebrates, but are lacking in the jawless verteb...
متن کاملElephant shark (Callorhinchus milii) provides insights into the evolution of Hox gene clusters in gnathostomes.
We have sequenced and analyzed Hox gene clusters from elephant shark, a holocephalian cartilaginous fish. Elephant shark possesses 4 Hox clusters with 45 Hox genes that include orthologs for a higher number of ancient gnathostome Hox genes than the 4 clusters in tetrapods and the supernumerary clusters in teleost fishes. Phylogenetic analysis of elephant shark Hox genes from 7 paralogous groups...
متن کاملElephant shark sequence reveals unique insights into the evolutionary history of vertebrate genes: A comparative analysis of the protocadherin cluster.
Cartilaginous fishes are the oldest living phylogenetic group of jawed vertebrates. Here, we demonstrate the value of cartilaginous fish sequences in reconstructing the evolutionary history of vertebrate genomes by sequencing the protocadherin cluster in the relatively small genome (910 Mb) of the elephant shark (Callorhinchus milii). Human and coelacanth contain a single protocadherin cluster ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014